Progress Donasi Kebutuhan Server — Your Donation Urgently Needed — هذا الموقع بحاجة ماسة إلى تبرعاتكم
Rp 1.500.000 dari target Rp 10.000.000
Even though Hoyle decided to take a different route, he did find this intuitive principle of Bondi and Gold compelling, especially since it also solved another problem inferred from the observations of the expanding universe. Hubble’s determination of the rate of expansion (which was later found to be wrong) implied a nightmarish scenario in which the universe was only 1.2 billion years old—far less than the estimated age of the Earth! So in spite of Hubble’s enormous prestige (“more than life sized in the 30s and 40s” according to Bondi), Hoyle, Bondi, and Gold felt that another solution had to be found. Unlike Bondi and Gold, however, Hoyle embarked on a more mathematical, rather than philosophical, approach. In particular, he developed his theory in the framework of Einstein’s general relativity. He started from the observational fact that the universe is expanding. This immediately raised a question: If galaxies are continuously rushing away from each other, does that mean that space is becoming more and more empty? Hoyle answered with a categorical no. Instead, he proposed, matter is continually being created throughout space so that new galaxies and clusters of galaxies are constantly being formed at a rate that compensates precisely for the dilution caused by the cosmic expansion. In this way, Hoyle reasoned, the universe is preserved in a steady state. He once commented wittily, “Things are the way they are because they were the way they were.” The difference between the steady state universe and the evolving (big bang) universe is shown schematically in figure 28, where I have again used the analogy of the inflating sphere. In both cases, we start (at the top) with a sample of the universe, in which the galaxies are represented by small round chads. In the evolutionary scenario (on the left), after some time has passed, the galaxies have receded from one another (bottom left), reducing the overall density of matter. In the steady state scenario, new galaxies have been created, so that the average density remained the same (bottom right).
The idea of matter being continuously created out of nothing may appear crazy at first. However, as Hoyle was quick to point out, no one knew where matter had appeared from in the big bang cosmology, either. The only difference, he explained, was that in the big bang scenario all the matter was created in one explosive beginning, while in the steady state model matter has been created at a constant rate throughout an infinite time and is still being created at the same rate today. Hoyle contended that the concept of continuous creation of matter (when put in the context of a specific theory) was much more attractive than creation of the universe in the remote past, since the latter implied that observable effects had arisen from “causes unknown to science.” To achieve a steady state, Hoyle added to Einstein’s general relativity equations a “creation field” term, the effect of which was to create matter spontaneously. What sort of matter? Hoyle did not know for sure, but he conjectured, “Neutron creation appears to be the most likely possibility. Subsequent disintegrations might be expected to supply the hydrogen required by astrophysics. Moreover, the electrical neutrality of the universe would then be guaranteed.” The rate at which new atoms were supposed to materialize out of empty space was too small to be directly observable. Hoyle described it once as “about one atom every century in a volume equal to the Empire State Building.”
The key virtue of the steady state scenario was that, as expected from all good scientific theories, it was falsifiable. Here is how philosopher of science Karl Popper expressed his views on what constitutes a theoretical system of natural science: