Progress Donasi Kebutuhan Server — Your Donation Urgently Needed — هذا الموقع بحاجة ماسة إلى تبرعاتكم
Rp 1.500.000 dari target Rp 10.000.000
I shall not require of a scientific system that it shall be capable of being singled out, once and for all, in a positive sense; but I shall require that its logical form shall be such that it can be singled out, by means of empirical tests, in a negative sense: it must be possible for an empirical scientific system to be refuted by experience.
The steady state model predicted that galaxies that are billions of light-years away should look, statistically speaking, just like nearby galaxies, even though we see the former as they were billions of years ago because of the time it takes their light to reach us. Bondi used to challenge the supporters of the evolving universe (big bang) model by saying, “If the universe has ever been in a very different state from what it is now, show me some fossil remains of what it was like a long time ago.” In other words, if, for instance, extremely remote galaxies were found to look (on the average) very different from galaxies in the neighborhood of the Milky Way, our universe could not be in a steady state.
When Hoyle, and, separately, Bondi and Gold, published their steady state papers, they presented the astrophysics community with a choice between two very different world views. On one hand, there was the big bang model, in which the universe was assumed to have had a beginning in the form of a dense and hot state (which Lemaître called the “primeval atom”). In addition to Lemaître, George Gamow was perhaps the strongest advocate for this scenario. As we saw in the last chapter, Gamow even (mistakenly) thought that all the chemical elements had been forged in this cosmic initial explosion.
In contrast to the big bang stood the steady state model, with its infinite past and unchanging cosmic scenery, despite the overall expansion. However, the telescopes of the late 1940s were not powerful enough to detect whether an evolutionary trend of the type implied by the big bang model existed or not. When Hoyle met Edwin Hubble for the first time, in August of 1948, he was delighted to hear from the latter that what was supposed to become the world’s largest telescope—the two-hundred-inch telescope on Mount Palomar in California—was undergoing its final testing. Hubble hoped to start observing remote galaxies soon thereafter. Disappointingly, however, even the large mirror of the Mount Palomar telescope could not collect enough light from very distant, ordinary galaxies to distinguish unambiguously between the two rival theories.
In October 1948, Hoyle, Bondi, and Gold attended a small meeting of the Royal Astronomical Society in Edinburgh. All three of them were invited to present their ideas about the steady state universe. Hoyle used the opportunity to advance for the first time a possible connection between an unchanging, self-sustaining cosmos and life: