Progress Donasi Kebutuhan Server — Your Donation Urgently Needed — هذا الموقع بحاجة ماسة إلى تبرعاتكم
Rp 1.500.000 dari target Rp 10.000.000
Two scientists showed independently in the 1920s that the behavior of the cosmic space-time is expected to be very similar. Those two researchers, Russian mathematician and meteorologist Aleksandr Friedmann and Belgian priest and cosmologist Georges Lemaître, applied Einstein’s theory of general relativity to the universe as a whole. They soon realized that the gravitational attraction of all the matter and radiation in the universe implies that space-time, Einstein’s combination of space and time, can either stretch or contract, but it cannot stably stand still at a fixed extent. These important findings eventually provided the theoretical background for the discovery by Lemaître and Hubble that our universe is expanding. But let’s start from the beginning.
In 1917 Einstein himself first attempted to understand the evolution of the entire universe in light of his general relativity equations. This effort initiated the transformation of cosmological problems from speculative philosophy into physics. The expansion of the universe had not been discovered yet. Moreover, not only was Einstein unaware of any observed large-scale motions, but until that time, most astronomers still believed that the universe consisted exclusively of our Milky Way galaxy, with nothing beyond. Astronomer Vesto Slipher’s observations of the redshifts (the stretchings of light, which were later interpreted as recession velocities of galaxies) of “nebulae” were neither widely known nor understood at the time. Astronomer Heber Curtis did present some preliminary evidence that the Andromeda galaxy, M31, might be outside the Milky Way, but Edwin Hubble confirmed unambiguously this profound fact—that our galaxy is not the entire universe—only in 1924.
Convinced in 1917 that the cosmos was unchanging and static on its largest scales, Einstein had to find a way to keep the universe described by his equations from collapsing under its own weight. To achieve a static configuration with a uniform distribution of matter, Einstein guessed that there had to be some repulsive force that could balance gravity precisely. Consequently, just a little over a year after he had published his theory of general relativity, Einstein came up with what appeared, at least at first glance, to be a brilliant solution. In a seminal paper entitled “Cosmological Considerations on the General Theory of Relativity,” he introduced a new term into his equations. This term gave rise to a surprising effect: a repulsive gravitational force! The cosmic repulsion was supposed to act throughout the universe, causing every part of space to be pushing on every other part—just the opposite of what matter and energy do. As we shall soon discover, mass and energy warp space-time in such a way that matter falls together. The fresh cosmological term effectively warped space-time in the opposite sense, causing matter to move apart. The value of a new constant that Einstein introduced (on top of the familiar strength of gravity) determined the strength of the repulsion. The Greek letter lambda, Λ, denoted the new constant, now known as the cosmological constant. Einstein demonstrated that he could choose the value of the cosmological constant to precisely balance gravity’s attractive and repulsive forces, resulting in a static, eternal, homogeneous, and unchanging universe of a fixed size. This model later became known as “Einstein’s universe.” Einstein concluded his paper with what turned out to be a pregnant comment: “That term is necessary only [my emphasis] for the purpose of making possible a quasi-static distribution of matter, as required by the fact of the small velocities of the stars.” You’ll notice that Einstein talks here about “velocities of stars” and not of galaxies, since the existence and motions of the latter were still beyond the astronomical horizons at the time.
With few exceptions, hindsight is usually 20/20. Cosmologists tend to emphasize the fact that by introducing the cosmological constant, Einstein missed a golden opportunity for a spectacular prediction. Had he stuck with his original equations, he could have predicted more than a decade before Hubble’s observations that the universe should be either contracting or expanding. This is certainly true. However, as I shall argue in the next chapter, the introduction of the cosmological constant could have constituted an equally significant prediction.
You may wonder how Einstein could add this new repulsive term into his equations without spoiling general relativity’s other successes in explaining several perplexing phenomena. For instance, general relativity elucidated the slight shift in the orbit of the planet Mercury in each successive passage around the Sun. Einstein was, of course, aware that his cosmological constant could undermine agreement with observations, so to avoid undesired consequences, he modified his equations in such a way that the cosmic repulsion increased proportionally to the spatial separation. That is, the repulsion was imperceptible over the distance scales of the solar system, but it became increasingly appreciable over vast cosmological distances. As a result, all the experimental verifications of general relativity (which relied on measurements spanning relatively short distances) could be preserved.